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We present trapping and cooling of single cesium atoms inside a microcavity by means of an intracavity far-off-
resonance trap (FORT). By the ‘magic’ wavelength FORT, we achieve state-insensitive single-atom trapping and
cooling in a microcavity. The cavity transmission of the probe beam strongly coupled to single atoms enables us
to continuously observe the intracavity atom trapping. The average atomic localization time inside the bright
FORT is about 7ms by introducing cavity cooling with appropriate detuning. This experiment presents great
potential in coherent state manipulation for strongly coupled atom–photon systems in the context of cavity
quantum electrodynamics.
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Experimental physicists have made great strides
toward the long-standing goal of producing a
well-confined, isolated, and manipulable individual
particle.[1] The use of cavity quantum electrodynam-
ics (QED), where an identified single mode in a high-
finesse optical cavity couples to a single atom to probe
matter-light interactions at the single quanta level,
is one candidate that is able to achieve this goal.[2,3]
Cavity QED also offers unique advantages for preci-
sion measurement and quantum information science
applications due to the fact that it provides the possi-
bility of realizing complex quantum networks.[4] The
fundamental unit is possibly constructed by single
trapped atoms strongly coupled to an optical cavity
in the optical frequency regime. The system can be
expanded when each atom acts as a network node and
the whole system is linked together by optical fiber
interconnects.[5−7] To construct such a quantum node,
a high quality resonator with small mode volume is
required for the strong atom–cavity interaction, i.e.,
by demonstrating a reversible state mapping between
atoms and photons with low dissipations.[8] Another
requirement is the development of experimental tech-
niques to trap and localize atoms within a cavity in
the strong coupling regime. Laser cooling and trap-
ping techniques have been used widely, and diverse
methods have been proposed to create the trapping
potentials for various atom confinements over the past
few decades. To date, the maximum dwell time of sin-
gle atoms inside a microcavity has been extended to
dozens of seconds.[9] By means of ground state cooling
of single atoms trapped in a three-dimensional optical
lattice at the center of an optical cavity, Reiserer et
al. have demonstrated full quantum control over the

internal state, position, and momentum of a single
atom, and its coupling to the cavity field.[10] The abil-
ity to fully control single atoms is important for many
other systems such as the demonstration of quantum
nondemolition detection for single photons,[11] elec-
tromagnetically induced transparency (EIT) with sin-
gle atoms in a cavity,[12,13] nonlinear quantum op-
tics at the level of individual atomic and photonic
quanta.[14,15]

Generally, additional far off-resonant trapping
beams,[16−19] near-resonant light with low intracav-
ity photon numbers,[20,21] and feedback control of sin-
gle atoms[22−24] are the main approaches to realize
the above experiments. In particular, an FORT at
the ‘magic’ wavelength has been used in a number
of recent experiments to investigate precision quan-
tum metrology for optical atomic clocks and coher-
ent control of optical interactions of single atoms and
photons within cavity QED.[25] The magic FORT is
able to separate internal and external dynamics well,
which is critical for precision measurement, frequency
metrology, and coherent manipulations of quantum
systems.[25] In this Letter, we experimentally demon-
strate single-atom trapping in a micro-optical cav-
ity using an intracavity far-off-resonance dipole-force
trap and the interaction between the atom and cavity
is in the strong coupling regime. The magic wave-
length FORT laser provides state-insensitive cooling
and trapping of single atoms in the cavity. The ob-
served average lifetime is up to about 4 ms and the
recorded maximum dwell time is about 40 ms, which
is about 360 times longer than that without using the
magic wavelength FORT. By monitoring the transmis-
sion of the probe laser through the cavity, this system
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allows continuous observation of the atomic motion in
the cavity mode. Through the cavity cooling mecha-
nism, the average dwell time of single atoms in the cav-
ity is doubled. This is an important step to lengthen
the intracavity trapping time of a single atom from a
few hundreds of microseconds to around 10 ms. With
the longer duration time of an atom inside the micro-
cavity, one can observe the dynamics of the trapped
single-atom motion inside the higher-order transverse
cavity modes and manipulate the quantum state of
entangled atom–cavity system for research of various
quantum behaviors.

SPCM

Trapped single atom
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lock laser beam
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Fig. 1. (Color online) Experimental setup for single atom
trapping and cooling within the cavity in the strong cou-
pling regime. The cavity (blue) comprises two mirrors
with a cavity length of about 86µm. The input beams
consist of FORT (for atom trapping), probe and locking
beams. The single photon counting module (SPCM) is
used to monitor cavity transmission. A magneto-optical
trap is located at 3mm above the center of the cavity.

The experimental setup is schematically depicted
in Fig. 1. The Fabry–Pérot cavity with cavity length
of about 86.8µm[26] is the central component for iso-
lation and interaction with single atoms. The cavity
consists of two super-polished spherical mirrors with
a radius of curvature of 100mm and an end diameter
of 1mm. The principle parameters of our cavity QED
system are the Rabi frequency 2𝑔0 for a single quan-
tum of excitation and the decay rates 𝜅, 𝛾 resulting
from the cavity decay and cesium atomic spontaneous
emission, respectively. Both 𝑔0 and 𝜅 are determined
by means of transmission of single atoms coupled to
the cavity. These parameters for our microcavity are
measured as (𝑔0, 𝜅, 𝛾) = 2𝜋 × (23.9, 2.6, 2.6) MHz for
the TEM00, where 𝑔0 is the coupling strength for the
transition of 62𝑆1/2, 𝐹 = 4 → 62𝑃3/2, 𝐹

′ = 5 in a ce-
sium atom at a wavelength of 𝜆0 = 852.36 nm. Strong
coupling between atom and cavity is thereby reached,
i.e., 𝑔0 ≫ (𝜅, 𝛾), leading to critical atom and photon
numbers 𝑁0 = 2𝜅𝛾/𝑔20 ≃ 0.024, 𝑚0 = 𝛾2/(2𝑔20) ≃
0.006.

The horizontal input beam to the cavity is illus-
trated in Fig. 1 (see the red beam), which is made
up of the FORT field, probe and locking beams,

which are all overlapped and eventually directed to
the different detectors at the output separately. The
probe light with 𝜆0 = 852.36 nm transmitted through
the cavity is monitored by a single photon counting
module (SPCM) allowing real-time detection of sin-
gle cesium atoms within the cavity field.[27−29] For
the probe beam, the waist of intracavity TEM00 is
𝜔0 = 23.8µm and the finesse of the cavity is 3.3×105.
An external cavity diode laser (ECDL) working at
a cavity resonance wavelength of 𝜆C=828 nm is used
for cavity locking and detuning control. To achieve
state-insensitive trapping of single atoms while still
maintaining strong coupling between atom and cav-
ity for the cesium 𝐷2 transition, we introduce the
magic wavelength laser at 𝜆F = 933.9 nm as the in-
tracavity FORT beam. The summation of ac-stark
shifts from different allowed optical dipole transitions
leads to both the ground and excited states shifted
downwards by comparable amounts, which is shown in
Fig. 2. The FORT beam caused detuning, which basi-
cally results in the effective couplings between single
atoms and cavity mode being functions of the atomic
position. However, magic wavelength FORT causes
the same shift for upper and lower levels, which pro-
vides the possibility of realizing state-insensitive trap-
ping and maintaining strong coupling for the 𝐷2 tran-
sition of the cesium atom. The FORT is provided by
another ECDL which is independently locked to the
cavity. The finesse of the cavity at this wavelength is
𝐹 ≈ 8600 and the waist of the intracavity TEM00 is
𝜔𝐹 = 24.9µm. Thus a mode-matched cavity output
power of 0.5 mW provides a trap with the depth of
𝑈0/𝑘B

≈ 5.4 mK. Both the probe and FORT beams
are linearly polarized along a direction that is orthog-
onal to the axis of the cavity.
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Fig. 2. (Color online) The ac-stark shift (6𝛿6𝑆1/2
,

6𝛿6𝑃3/2,𝐹
′=5) as a function of wavelength 𝜆F for the

(6𝑆1/2, 6𝑃3/2) levels of cesium for a linearly polarized
FORT. The normalization parameter is defined as 𝛿 =
|𝛿/𝛿6𝑆1/2

(𝜆F = 933.9 nm)|.

Roughly 1×105 atoms are collected by a magneto-
optical trap (MOT) in a UHV chamber operating at
a background pressure of about 1× 10−10 Torr, which
is located about 3 mm above the center of the cavity.
After a polarization gradient cooling phase, the tem-
perature of cold atoms is down to 30µK.[28] Then, as

104210-2

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 32, No. 10 (2015) 104210

soon as the trapping laser beams and magnetic field
are switched off, the atoms fall freely under gravity.
Freely falling atoms arrive at the cavity center over
an interval of about 10 ms with the average kinetic en-
ergy ⟨𝐸K/𝑘B

⟩ ≈ 0.4 mK, mean velocity ⟨𝜈⟩ ≈ 0.2 m/s,
and average transit time ∆𝑡 = 2𝜔0/𝜈 ≈ 120µs. Two
additional orthogonal pairs of counter-propagating re-
pumping laser beams are located perpendicular to the
cavity axis in the horizontal direction (see red beams
in Fig. 1.). These beams near the 62𝑆1/2, 𝐹 = 3 →
62𝑃3/2, 𝐹

′ = 3 transition are used to counteract the
atomic velocity from the free-fall motion and to pro-
vide the possibility of trapping atoms in the FORT.
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Fig. 3. The recorded atom trapping signals by the SPCM
either at resonance (a) or with some detunings (b).
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Fig. 4. The recorded atom trapping signals containing
information about single atoms motion in the cavity: (a)
the dwell time about 13.6ms, and (b) about 26 ms.

The detection of typical single atoms trapped
within the cavity mode is illustrated in Fig. 3. Two
separate trapped atom events are presented by con-
tinuous observation under different detunings between
the cavity or probe laser and the atom. For an exam-
ple, the arrival of an atom at the cavity mode is sensed
by observing an obvious reduction of the probe trans-
mission, and we can see that the atom is trapped by
the FORT at the magic wavelength with a dwell time
of about 13.4 ms when the cavity mode is on resonance
(Δpa = 𝜔p − 𝜔a = 0 MHz, Δca = 𝜔c − 𝜔a = 0 MHz),
where 𝜔p, 𝜔a, 𝜔c denote the probe, atom transition,
and cavity frequencies, respectively. The second event

was recorded with detunings of Δpa = −43 MHz and
Δca = −30 MHz, and for this case, the transmis-
sion of the cavity remains at a low level in the ab-
sence of an atom and reaches a higher level once an
atom is trapped inside the cavity. The dwell time is
about 16ms. It should be noted that the repump-
ing beams play an important role in cooling atoms.
Without this repumping light the atoms will fall into
the cavity and then fly out from the near conservative
FORT. In the absence of the repumping laser, single
atoms could not be trapped in the cavity. We can
not only obtain the dwell time of single atoms from
the recorded transmission spectra but also know in-
formation about the motion of single atoms inside the
cavity mode like Fig. 4. In theory, the axial and radial
oscillations can be clearly observed by the photon cor-
relation function.[30] However, it does not work here
due to the fact that the time intervals between our
data points are not spaced closely enough to observe,
resulting from the limited signal-to-noise ratio for our
system.
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Fig. 5. Friction force 𝑓1 for an intracavity atom. Heating
and cooling regions are indicated by red and blue colors,
respectively. The detunings are defined as Δac = 𝜔a − 𝜔c

and Δpc = 𝜔p − 𝜔c. The parameters of our cavity are
(𝑔0, 𝜅, 𝛾) = 2𝜋 × (23.9, 2.6, 2.6)MHz and the intracavity
photon number is about 1.

Single atoms strongly coupled to a high finesse cav-
ity allows cooling of the atoms by the cavity cooling
mechanism,[31−33] which can improve the performance
of atom–cavity systems for quantum information pro-
cessing. Theoretical investigation has indicated the
importance of proper selection of the friction coeffi-
cient, which governs the intracavity atom to be either
in the cooling or heating regions. The total friction
force 𝑓1 is determined by the detunings[34] and the
expression for the force 𝑓1 can be found in appendix
A of Ref. [34]. We have shown the force 𝑓1 of the
single atom in Fig. 5 as a function of both detunings
Δpc = 𝜔p − 𝜔c and Δpa ≡ 𝜔p − 𝜔a with the parame-
ters (𝑔, 𝜅 and 𝛾) corresponding to our system. Con-
sidering the signal-to-noise ratio of the SPCM and the
region of cavity cooling, we choose Δpc = 0 MHz and
Δac = 25 MHz to further extend the intracavity dwell
time.

The average dwell time of an atom in the presence
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of probe beams (bright trap) is statistically obtained
by recording the atom trapping signals. The result
is shown in Fig. 6. The dwell time of single atoms in
the cavity is about 3.7±0.2 ms without cavity cooling
and is extended to 6.8±0.9 ms by cavity cooling (see
Fig. 6). Note that the probe laser is always on dur-
ing the loading stage of the dipole trap, leading to
the occurrence of light-induced heating and then the
creation of an additional loss channel.[35] In principle,
the lifetime of an atom in a dark trap should be longer
by reducing or switching off the intensity of the probe
laser.[16,33]
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Fig. 6. The average dwell time in the cavity for two cases:
without cavity cooling (blue squares) and with cavity cool-
ing (red dots). The solid lines are exponential fits that
yield dwell times of 3.7±0.2ms and 6.8±0.9ms, respec-
tively.

In summary, we have described in detail a state-
insensitive single-atom trap in an optical cavity by
means of an intracavity magic wavelength FORT
in a strong coupling cavity QED system. This
FORT can eliminate the relative ac-stark shift be-
tween the ground and excited states, resulting in state-
insensitive trapping and cooling of single atoms in the
cavity. In our system the intracavity dwell time for
single atoms can be extended to as long as 3.7±0.2 ms,
which is much longer than that with no FORT at all.
By cavity cooling mechanism the dwell time can be
further increased to 6.8±0.9 ms by the optimized de-
tunings. The final dwell time is limited by the fluctua-
tions of light forces of the far-detuned intracavity field
and various technical noises in the experiment. Long-
time trapping single atoms within a cavity is impor-
tant for realizing coherent state manipulation of single
atoms in strongly coupled atom–cavity QED systems
and quantum information.
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